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ABSTRACT

In this report, we describe an algorithm for correlating

measurements from several sensors. This is a problem area in

multiple sensor tracking in a dense target environment. It is

shown that the correlation problem is similar to the assignment

problem in operation research with assignment penalties being

equal to the sufficient statistic of the generalized likelihood

ratio test. An example is given to illustrate the correlation

performance for two optical sensors tracking ballistic

trajectories.
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1. INTRODUCTION

In many target tracking applications, one is confronted with

the problem of multiple sensors simultaneously tracking a number

of targets. This situation brings up at least three problem

areas: (1) the identification of a time sequence of measurements

associated with the same target, (2) the identification of

measurements from several sensors associated with the same target,

and (3) efficient algorithms for processing multiple sensor data

after both (1) and (2) have been completed.

The f1irst problem above is often referred to as the problem

of multiobject tracking and has received considerable attention

in recent years*. The second problem can be viewed as a special

case of the first; it does havehowever, its own characteristics

and can be treated separately. This is the subject of this report.

The problem (3) above was the subject of Ref. [3] where

Kalman filter configurations for multiple sensor data processing

were studied in detail.

In this report, we present an algorithm for identifying the

same object from measurements made by several sensors. It can

be shown that the sensor to sensor measurement correlation

problem is the same as the classical assignment problem in

operation research, [4]-[5]. The penalties or performance

*See Refs. [1] and [21 for a survey of open literatures.
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ratings used for association can be shown to be the sufficient

statistic of the multiple hypothesis generalized likelihood ratio

test. For Gaussian random vectors, the sufficient statistic

follows the chi-square distribution. This property can be used

to eliminate those measurements which are highly unlikely to be

correlated with the same target. All these derivations will

be shown in the next section. In the third section, we give an

example showing the performance of correlating measurements of

two optical sensors tracking multiple ballistic targets.
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2. A CORRELATION ALGORITHM

2.1. The Generalized Likelihood Ratio Test

Let yij denote the j-th measurement of the i-th sensor,

assuming that there are M sensors taking measurements on the same

N targets. The problem where the target sets observed by each

sensor are not identical will be discussed later.

We note that the term "measurement" should be inter-

preted in a more general sense. For example, Zij may represent

a state estimate of the j-th target from the i-th sensor. In

another example, a subset of y.j may be actual measurements and

the remaining subset are predicted measurements from target state

estimators. This second case is the same as the track main-

tenance problem of multiple sensor tracking in a dense target

environment.

We assume that all .j's are in the same coordinate

system. For a specific application, the required transformation

for satisfying the above assumption can be defined.

Let Hk denote the hypothesis that the same target has

generated measurements {yiji i=l'''''M}" There are therefore a

total of NM possible hypotheses. Let x denote the true measure-

ment vector corresponding to Hk then the generalized likelihood

ratio test requires the following decision function [6]

d(i i; i=l,...,M) (2.1)



where the above decision function is obtained by using the maxi-

mum likelihood estimate of x, i.e., the R satisfying

max (p(yi ; i=l,...,M/x)) (2.2)
i

Substituting R in the density p(zii; i=l,...,M/x) gives the

decision function (2.1). Equations (2.1) and (2.2) form the

sufficient statistic for correlating measurements from multiple

sensors.

If the measurement noise vector is independent between

sensors and follows a Gaussian density function with zero mean

and covariance Pij, then equation (2.1) becomes

M

d(yiJi; i=l,..,M) = c exp{-/2Z(4iji_g)Tp.i-l(i
i-il

(2.3)

where ij ij i  i jil (2.4)

Notice that the R above is the maximum likelihood estimate of x

assuming that all ZiJi are correlated. When this is true, it

is the compressed measurement discussed in [3]. Equations (2.3)-

(2.4) give the sufficient statistic for the Gaussian measurement

noise case.

In order to further illustrate the above results, let

us consider the problem of correlating measurements from two

sensors. Let (Yi' i=l,...,N} and {zj, j=l,...,N) denote the
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measurements of the first and second sensors, respectively.

Furthermore, we assume that the measurement noise vectors of

Yi and z. are Gaussian with zero mean and covariance Pi and Z j

respectively. Using these assumptions, then Eq. (2.3) becomes

d(y.,z.) = c expT-/2[(yi T -l y + - ) T Z -l (z

-J c ex{l2(y )P (yi.-k)+(z.-S ) i. (z-)

(2.5)

where -1 -1 1 1
R = [Pi- +E [P. Y.+. zJ] (2.6)

One can now simplify Eq. (2.5) by substituting (2.6) in (2.5).

This is done with the following derivations:

(1) yi-R

- .- 1] p-'iP-l+ - I
- {I- [Pi 1+7". I j~- - 1] Z. z,

-1 -l

T -

- 11 -11

(I-[P i~-+Ei] ( - . -[iZ i

Pi- + Z j 1 -1yi-E j

T-i

[Z j P i-1+1] (yi-zj

(2) (yi-_) TPi- I (yi-R_)

= (yi-zj) T [E j +Pi]- 1iP i [7 +Pi i (yi-z ) (2.7)

(3) Similarly, one obtains

z.j- = [Pi E .- 1+ I ] - I Y-

-J - J 1 -- Zj
(yi-zj)T[Pi+Ej]-lE -[Pi+EF] -
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Substituting (2.7) and (2.8) into (2.5) yields

d(i,z.)

C exp {-1/2 (yi-zj) (Tyi-zj)} (2.9)

Notice that all information for decision is contained in the

exponent of d(yi,zj). It is therefore the sufficient statistic

for the generalized likelihood ratio test, i.e.,

T -i

9ij = (i-zj) [Pi+Ej] (i-zj) (2.10)

Notice that Z.. can be interpreted as a weighted distance measure13

between yi and z.. For the case that y. and z. are indeed from-3 1 -3

the same target, Z follows a chi-square distribution. For the

133case that the above situation is not true, yi-z. is not zero mean,

Z.. therefore has high probability of attaining values larger13

than that of a chi-square random variable. This fact forms the

basis of using chi-square statistics for choosing a threshold

for pre-screening Z .'s.1J

Consider the case that one would like to decide which

Yi is correlated with a particular z.. For a fixed j, the

generalized multiple hypothesis testing procedure will select

the yi satisfying

min for a given j. (2.11)i=l,...,N i6
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If one simply repeats the above procedure for all j, then

ambiguous situations may arise. This is because the same

measurement of a given sensor may be selected as correlated with

several measurements of the other sensor while some measurements

may be declared uncorrelated completely. This situation may be

possible when sensors do not have perfect resolution, e.g., a

sensor may report only one measurement for several closely

spaced targets while the second sensor has already resolved

these targets. Situations like this can be treated by consider-

ing the property of the Chi-square distribution and this subject

will be discussed in Section 2.3. For the case that unambiguous

matches between y. and z. must be made (i.e., the completely-D

resolved case), this gives rise to the classital assignment

problem.

2.2. The Assignment Problem

Consider Table 2.1. Entries of the matrix can be ,.'s
1]

of Eq. (2.10). In the classical assignment problem of operations

research, the Z. may represent the penalty (or payoff) of

assigning the i-th person to work on the j-th job. The optimum

assignment is selected as these entries giving

min 
(212i'j Fa 2.2

i,j

with the constraint that each column/row can be assigned to a

row/column only once.



TABLE 2.1

ENTRIES OF AN ASSIGNMENT PROBLEM

Measurements of 1st Sensor

Y-L 1 2 Y3 YN

z k. z.9

4 -2 21 22 23 2
0
U)

10

0)
4Ji

Q)

z N N 9 NN

Z. . = the sufficient statistic of assuming z.and y
being correlated.
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Notice that the above matrix is similar to the threat

distribution matrix discussed in [8] except that the threat/taret

correlation does not have the unique match constraint.

A trivial approach to the above optimization problem

is to enumerate all possible combinations and choose the one with

minimum sum. This results in N! trials. A classical method

called the Hungarian algorithm [4] which requires substantially

fewer operations has been known for many years in the field of

combinatorial programming. A particular method of implementing

the Hungarian algorithm given by Munkre [5]* requires at most

(lN 3+12N 2+31N)/6 operations representing a substantial saving

for large N's. The details of the Hungarian/Munkre algorithm

will not be repeated here.

There is a "suboptimal" approach to the assignment

problem called the row and column elimination method. This

algorithm proceeds as follows.

(1) select an arbitrary row (or column), find its

minimum entry,

(2) search the corresponding column (or row) con-
taining this entry for a minimum.

(3) repeat (1) and (2) until this entry is the
minimum for both the row and the column con-
taining it. This row and column are declared

to be correlated.

*The authors are indebted to Dr. R. B. Holmes for pointing out

this reference.
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(4) eliminate this row and column from further
consideration, then repeat (l)-(3) until all
rows and columns have been eliminated.

The above algorithm is "suboptimal" because it does not always

give optimal solution for (2.12). In the sensor-to-sensor cor-

relation problem, if the target density is sufficiently "low"

such that a Z. which does not correspond to the same target will3j

attain a much larger value, then the row and column elimination

method frequently gives the optimum solution.

The above discussions illustrate the problem of cor-

relating measurements from two sensors. For more than two

sensors, the computational load increases rapidly although

the problem is conceptually straightforward. In a multiple

sensor problem, one first computes the sufficient statistic

using (2.1)-(2.2). Let it be denoted as 1 1 11 2 11 3 F

where M is the total number of sensors. One can now visualize

the Z. i as entries of a "super matrix" with dimension

(N x N x N x... x N) where there are M N's. The correlation

solution is given by the combination of mutually independent

entries achieving the minimum sum. It is interesting to note

that a corresponding Hungarian/Munkre algorithm for the afore-

mentioned problem does not seem to be available yet. An ex-

haustive search method will require enumerating (N!)M1

possiblities and this number looks prohibitive even for a

modest range of N and M. The computational requirement for the

1i0



row and column elimination method is still reasonable but this 0

method works well only for a modest target density.

Finally, we comment that the solution criterion given

by (2.12) represents one of many possibilities. A more general

performance index can be chosen as

1 Ii2jl p  , for p > 1 (2.13)

i,j
J

max . (2.14)
hij

Notice that the above criterion corresponds to the minimum norm

problem in Banach space. If one chooses (2.14) as the criterion

for minimization, this corresponds to the minimum maximum entry

problem. The criterion (2.12) chosen for this report cor-

responds to a minimum error probability.

2.3. The Chi-Square Thresholding Technique

The discussion in the above two sections constitutes an

essential portion of a sensor-to-sensor correlation algorithm.

It does not however, consider situations when (1) sensor field of

views (FOV) do not completely overlap and (2) the sensor resolu-

tion capability is limited. For these situations, we consider

an approach based upon the Chi-square statistics.
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As we noted earlier for the Gaussian measurement noise

case, if Z% is formed by the same target, it is a Chi-square

random variable. A Chi-square random variable x with n-th

degree-of-freedom follows the following density function 17]:

p(x) A x (n-l)/2 e-X/2, (2.15)
n/2 --2(2T,) 3 , x

where A is a normalization factor. With (2.15) one can compute

the cumulative probability of x.

When Z is formed by two different targets, then13

.-z. has a non-zero mean. For this case the is proportional

to the square of the mean vector, it will therefore attain a

value larger than that of a Chi-square variable. When one forms

the kij matrix (Table 2.1), one can first disqualify those larqe

Z..'s because they are statistically unlikely to be correlated.

This procedure will resu t in a partially filled matrix. Some

parts of the matrix may become disjoint from the others. Their

minimum solutions are independent of the rest, they can therefork

be treated independently. Resolving several smaller matrices is

cxmputationally more efficient than resolving one larger matrix.

Some of the submatrices may not be square and may not be

completely filled. The Hunarian/Munkre method can be

trivially modified to handle this case.
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A

A target which appears only in the FOV of one sensor

will result in large ' values, and will therefore likely be

,iscarded in the above thresholding process.

When target density is high so that some sensors may

not be able to resolve some closely space targets, the , values

will be small even for mismatched cases. In order to reduce

the probability of leakage, one may want to accept one measure-

ment of one sensor to be correlated with several measurements of

the other sensor. For examples, let denote the i-th measure-

ment from the first sensor and j-th measurement from the second

sensor which have been declared correlated using the method of

Section 2.2. One then searches for those entries of i-th row and

1-th column which are within a certain value of . All these

entries will be accepted as possible correlations. This method

will increase the correct correlation rate for the case with

imperfect sensor resolution and high target density, it will

nevertheless also increase the false alarm rate. A later numeri-

cal example will illustrate this fact.

The above discussion establishes a method for reject-

ing highly unlikely correlations and for accepting multiple

correlations. This method may be ad hoc but an exact approach

seems to be difficult to obtain.

We note that for the case of more than two sensors,

the sufficient statistic for Gaussian measurement noise case is

13



also a Chi-square random variable and the discussions above also

apply. There may be cases such that a target appears in some

sensors and does not appear in others. Such a target may also

obtain a small sufficient statistic when it is computed with

a nearby target. This is because the sufficient statistic

(Eqs. (2.3)-(2.4)) is obtained as the averaged weighted distance.

To circumvent this problem, one may first want to perform cor-

relation tests for all two-sensor pairs and isolate those targets

which do not appear in all sensors. Those targets which are

identified to be common to the same sensors will be processed

together.

2.4. Algorithm Summary

We now summarize the above discussions to give an

algorithm for multiple sensor measurement correlation.

(1) Choose two sensors, compute the sufficient statistic,
Zij, between their measurements using (2.1)-(2.2), or
(2.9) for the Gaussian measurement noise case.

(2) For a desired leakage probability, a threshold can be
chosen using (2.15). Apply the threshold to eliminate
those measurements which are unlikely to be correlated.
Identify those targets which appear to only one sensor.

(3) Repeat (1) and (2) for all sensor pairs, identify measure-
ments that are common to the same subset of sensors.

(4) Using one such subset of sensors, compute the sufficient
statistic, illi2,...,imp using their measurements with

Eqs. (2.1)-(2.2), or (2.3)-(2.4) for the Gaussian
measurement noise case.

14



(5) For a desired leakage probability, a threshold for
.. i can be chosen using (2.15). Apply the

threshold to all k.. 's. For those cases that

are above the threshold the corresponding measurements
are declared uncorrelated. This may again result in
some measurements not being correlated at all.

(6) Apply the Hungarian/Munkre type algorithm to process
the submatrices resulted from thresholding. This gives
the correlation solution.

(7) Let Zili20,...,iM denote an entry representing a set of

correlated measurements. Fix i2 ,.., iM, search those

Z. . M for all i's that are within a thresholdl i2 0,...,I M

value of Z. * Those entries which are within

the threshold define a set of multiple (or redundant)
correlations. This step is repeated for all *i's and
all correlations accepted in step (6).

(8) Repeat steps (4)-%7) to process all sensor subsets

identified by steps (M)-(3).

The above steps define an algorithm for correlating

multiple sensor measurements. The correlation criterion is

the minimum sum of weighted distances among measurements from

each sensor. For Gaussian measurement noise vectors, the Chi-

square statistic is applied to eliminate highly unlikely cor-

relations. A method (step (7)) for accepting multiple cor-

relations for reducing the leakage probability is described.

We note that a multi-dimensional Hungarian/Munkre type

of algorithm is not yet available. The row and column elimina-

tion method may work well for modest target densities. One may

15
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also perform correlation test for all pairs of sensors, in a

sequential fashion. The last two approaches are computationally

much simpler although they are not optimum.
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3. A NUMERICAL EXAMPLE

In this section, we consider an example which illustrates

the target handover problem between two sensors. Consider the

case of two optical sensors tracking a complex of ballistic

targets. The first sensor tracks a subset of targets for

100 seconds then predicts their state vectors 1000 seconds

later. The second sensor tracks another subset of targets which

partially overlaps that of the first sensor also for 100 seconds.

The end of track time of the second sensor is the same as the end of

the prediction time of the first sensor. The correlation of esti-

mates from two sensors constitutes a typical handover problem.

Initially, the number of targets tracked by each sensor is

equal to twenty with fifteen of them being common to both sensors.

J The initial spacing of these targets is strictly uniform and very

large (with a 5 to 1 target spacing to tracking uncertainty ratio

projected to the angle domain) so that incorrect correlations

among them are highly unlikely. These targets are moving with

nearly the same velocity. The target density is increased by

introducing more targets around the original targets where the

new targets are randomly distributed with a uniform density over

about five percent of the original target spacing and moving with

a very small re'ative velocity. We will call an original target

with new targets surrounding it as a cluster. Each sensor therefore tracks

twenty clusters where the initial cluster size is one target.

17



The probability of correct correlation (Pc) and the pro-

bability of false correlation (Pf) are defined as follows

number of targets correctly correlated

c number of targets

number of incorrect correlations
f =total number of correlations declared

A covariance analysis technique (the Cramer-Rao bound)

was applied to obtain the track accuracy using optical sensors,

[9]. The simulated state estimate is obtained by corrupting

true states with random numbers satisfying the Cramer-Rao

covariance bound. A correlation performance using Pc and Pf

is obtained with cne hundred repetitions on each target.

The Pc and Pf as a function of number of targets in a

cluster is shown in Fig. 3.1. we note that a Chi-square thres-

hold of 30 was used for these results. Redundant matches were

not allowed. In this case the number of targets is equal to the
number of declared correlations, so Pc and Pf sum up to one.

Notice that P c drops off rapidly as the number of targets

in a cluster increases. This is due to the small spacing of targets

within a cluster. If one allows for redundant correlations,

the Pc can be improved substantially but there will be an increase

of Pf. Figure 3.2 shows such a trade-off. We note that the re-

dundant correlation is possible by accepting those targets whose

18
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Chi-squares are within a certain range of that of the optimum

choice. Results of Fig. 3.2 are obtained with this approach.

The dotted line denotes the case of not allowing redundant cor-

relations. Notice that the increase in Pf for maintaining a 90%

Pc is rather small.
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4. SUMMARY

In this report, we have presented an algorithm for cor-

relating measurements of several sensors tracking in a multiple

target environment. It is shown that the correlation problem is

the same as the assignment problem of operations research

with the assignment penalties being equal to the sufficient

statistic of the generalized likelihood ratio test. For the

case of Gaussian measurement noise, a Chi-square thresholding

technique is applied to deal with the problem of high target

density, limited sensor resolution, and incomplete overlapping

of sensor field of views. An example is given, illustrating the

correlation performance and the trade-off between correct cor-

relation and false correlation when redundant correlations are

allowed.
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